

Python Codon Adaptation Index

[image: DOI] [http://joss.theoj.org/papers/8adf6bd9fd6391d5343d15ea0b6b6525] [image: Documentation Status] [https://cai.readthedocs.io/en/latest/?badge=latest] [image: Travis] [https://travis-ci.org/Benjamin-Lee/CodonAdaptationIndex] [image: CodeFactor] [https://www.codefactor.io/repository/github/benjamin-lee/codonadaptationindex/overview/master] [image: PyPI] [https://pypi.org/project/CAI/]

An implementation of Sharp and Li’s 1987
formulation [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC340524/pdf/nar00247-0410.pdf]
of the codon adaption index [https://en.wikipedia.org/wiki/Codon_Adaptation_Index].

Installation

This module is available from PyPI and can be downloaded with the following command:

$ pip install CAI

To install the latest development version:

$ pip install git+https://github.com/Benjamin-Lee/CodonAdaptationIndex.git

Quickstart

Finding the CAI of a sequence is easy:

>>> from CAI import CAI
>>> CAI("ATG...", reference=["ATGTTT...", "ATGCGC...",...])
0.24948128951724224

Similarly, from the command line:

$ CAI -s sequence.fasta -r reference_sequences.fasta
0.24948128951724224

Determining which sequences to use as the reference set is left to the user,
though the HEG-DB [http://genomes.urv.cat/HEG-DB/] is a great resource of
highly expressed genes.

Contributing and Getting Support

If you encounter any issues using CAI, feel free to create an issue [https://github.com/Benjamin-Lee/CodonAdaptationIndex/issues].

To contribute to the project, please create a pull request [https://github.com/Benjamin-Lee/CodonAdaptationIndex/pulls]. For more
information on how to do so, please look at GitHub’s documentation on pull
requests [https://help.github.com/articles/about-pull-requests].

Citation

Lee, B. D. (2018). Python Implementation of Codon Adaptation Index. Journal of
Open Source Software, 3 (30), 905. https://doi.org/10.21105/joss.00905

@article{Lee2018,
 doi = {10.21105/joss.00905},
 url = {https://doi.org/10.21105/joss.00905},
 year = {2018},
 month = {oct},
 publisher = {The Open Journal},
 volume = {3},
 number = {30},
 pages = {905},
 author = {Benjamin D. Lee},
 title = {Python Implementation of Codon Adaptation Index},
 journal = {Journal of Open Source Software}

Contact

I’m available for contact at
benjamin_lee@college.harvard.edu.

Reference

Sharp, P. M., & Li, W. H. (1987). The codon adaptation index–a measure of
directional synonymous codon usage bias, and its potential applications.
Nucleic Acids Research, 15(3), 1281–1295.

Table of Contents

	Usage
	Basic Usage

	Advanced Usage

	Other Genetic Codes

	API Reference

	CLI Reference

	License

Indices and tables

	Index

	Module Index

	Search Page

Usage

Basic Usage

As covered in Quickstart, the basic CAI() function is fast and
easy. Simply import it and get to your science. Note that it also plays nicely
with Biopython Seq objects [https://biopython.org/wiki/Seq]:

>>> from CAI import CAI
>>> from Bio.Seq import Seq
>>> CAI(Seq("AAT"), reference=[Seq("AAC")])
0.5

The CLI is equally easy to use. For example, to find the CAI of the native GFP
gene [https://github.com/Benjamin-Lee/CodonAdaptationIndex/blob/master/example_seqs/gfp.fasta]
with respect to the highly expressed genes [https://github.com/Benjamin-Lee/CodonAdaptationIndex/blob/master/example_seqs/ecol.heg.fasta] in E. coli,
only one command is required:

$ CAI -r example_seqs/ecol.heg.fasta -s example_seqs/gfp.fasta
0.3753543123685772

Note

Both CAI and cai are valid commands.

More example sequences can be found in the example_seqs directory on GitHub [https://github.com/Benjamin-Lee/CodonAdaptationIndex/blob/master/example_seqs/].

Advanced Usage

If you have already computed the weights or RSCU values of the reference set,
you can supply CAI() with one or the other as arguments. They must be
formatted as a dictionary and contain values for every codon.

To calculate RSCU without calculating CAI, you can use RSCU(). RSCU()’s only
required argument is a list of sequences.

Similarly, to calculate the weights of reference sequences, you can use
relative_adaptiveness(). relative_adaptiveness() takes either a list of
sequences as the sequences parameter or a dictionary of RSCUs as the RSCUs
parameter.

Warning

If you are computing large numbers of CAIs with the same reference
sequences, first calculate their weights with relative_adaptiveness()
and then pass that to CAI() to eliminate redundant computation.

So, to modify the example in Quickstart:

>>> from CAI import CAI, relative_adaptiveness
>>> sequences=["ATGTTT...", "ATGCGC...",...]
>>> weights = relative_adaptiveness(sequences=sequences)
>>> CAI("ATG...", weights=weights)
0.24948128951724224

These are exactly equivalent:

>>> assert CAI("ATG...", weights=weights) == CAI("ATG...", reference=sequences)
True

except the former will be faster if you’re using the same weights repeatedly.

Other Genetic Codes

All functions in CAI support an optional genetic_code parameter, which is set
by default to 11 (the standard genetic code).

In the CLI, there is an optional “-g” parameter that changes the genetic code:

$ CAI -s sequence.fasta -r reference_sequences.fasta -g 22
0.25135779681923687

API Reference

	
RSCU(sequences, genetic_code=11)

	Calculates the relative synonymous codon usage (RSCU) for a set of sequences.

RSCU is ‘the observed frequency of [a] codon divided by the frequency
expected under the assumption of equal usage of the synonymous codons for an
amino acid’ (page 1283).

In math terms, it is

\[\frac{X_{ij}}{\frac{1}{n_i}\sum_{j=1}^{n_i}x_{ij}}\]

“where \(X\) is the number of occurrences of the \(j\) th codon for
the \(i\) th amino acid, and \(n\) is the number (from one to six)
of alternative codons for the \(i\) th amino acid” (page 1283).

	Parameters

	
	sequences (list [https://docs.python.org/3/library/stdtypes.html#list]) – The reference set of sequences.

	genetic_code (int [https://docs.python.org/3/library/functions.html#int], optional) – The translation table to use. Defaults to 11, the standard genetic code.

	Returns

	The relative synonymous codon usage.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When an invalid sequence is provided or a list is not provided.

	
relative_adaptiveness(sequences=None, RSCUs=None, genetic_code=11)

	Calculates the relative adaptiveness/weight of codons.

The relative adaptiveness is “the frequency of use of that codon compared to
the frequency of the optimal codon for that amino acid” (page 1283).

In math terms, \(w_{ij}\), the weight for the \(j\) th codon for
the \(i\) th amino acid is

\[w_{ij} = \frac{\text{RSCU}_{ij}}{\text{RSCU}_{imax}}\]

where “\(\text{RSCU}_{imax}\) [is] the RSCU… for the frequently used
codon for the \(i\) th amino acid” (page 1283).

	Parameters

	
	sequences (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The reference set of sequences.

	RSCUs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The RSCU of the reference set.

	genentic_code (int [https://docs.python.org/3/library/functions.html#int], optional) – The translation table to use. Defaults to 11, the standard genetic code.

Note

Either sequences or RSCUs is required.

	Returns

	A mapping between each codon and its weight/relative adaptiveness.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When neither sequences nor RSCUs is provided.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – See RSCU() for details.

	
CAI(sequence, weights=None, RSCUs=None, reference=None, genetic_code=11)

	Calculates the codon adaptation index (CAI) of a DNA sequence.

CAI is “the geometric mean of the RSCU values… corresponding to each of the
codons used in that gene, divided by the maximum possible CAI for a gene of
the same amino acid composition” (page 1285).

In math terms, it is

\[\left(\prod_{k=1}^Lw_k\right)^{\frac{1}{L}}\]

where \(w_k\) is the relative adaptiveness of the \(k\) th codon in
the gene (page 1286).

	Parameters

	
	sequence (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DNA sequence to calculate the CAI for.

	weights (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The relative adaptiveness of the codons in the reference set.

	RSCUs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The RSCU of the reference set.

	reference (list [https://docs.python.org/3/library/stdtypes.html#list]) – The reference set of sequences.

Note

One of weights, reference or RSCUs is required.

	Returns

	The CAI of the sequence.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – When anything other than one of either reference sequences, or RSCU dictionary, or weights is provided.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – See RSCU() for details.

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – When there is a missing weight for a codon.

Warning

Will return nan if the sequence only has codons without synonyms.

CLI Reference

$ CAI --help
Usage: CAI [OPTIONS]

Options:
 -s, --sequence FILE The sequence to calculate the CAI for.
 [required]
 -r, --reference FILE The reference sequences to calculate CAI
 against. [required]
 -g, --genetic-code INTEGER The genetic code to use. Defaults to 11.
 --help Show this message and exit.

License

This software is licensed under the MIT License. If you’re unfamiliar with
software licenses, here is a handy summary of the license [https://choosealicense.com/licenses/mit/].

For reference, the license is reproduced below:

MIT License

Copyright (c) 2017 Benjamin Lee

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 CAI	

Index

 C
 | R

C

 	
 	CAI (module)

 	
 	CAI() (in module CAI)

R

 	
 	relative_adaptiveness() (in module CAI)

 	
 	RSCU() (in module CAI)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Python Codon Adaptation Index

 		
 Usage

 		
 Basic Usage

 		
 Advanced Usage

 		
 Other Genetic Codes

 		
 API Reference

 		
 CLI Reference

 		
 License

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

